
 International Journal of Advanced and Applied Sciences, 2(12) 2015, Pages: 14‐18   
  

 
 

Contents lists available at Science‐Gate

International Journal of Advanced and Applied Sciences 
Journal homepage: http://www.science‐gate.com/IJAAS.html 

 

14 

 

Effect	of	fiber	tow	density	and	braid	angle	of	braided	basalt	composite	tube	under	
crushing	impact	 M. Nazrul Roslan1, 2, *, M. Yazid Yahya 2, Z. Ahmad 2, A.R. Azrin Hani 1, Iqbal Mokhtar 2  
1Faculty	of	Engineering	Technology,	University	Tun	Hussein	Onn	Malaysia,	81600	Batu	Pahat,	Johor,	Malaysia	
2Centre	for	Composite,	University	Technology	Malaysia,	81310	Skudai,	Johor,	Malaysia	
	A R T I C L E  I N F O   A B S T R A C T  
Article	history:	Received 27 December 2015 Received in revised form 16 January 2016 Accepted 16 January 2016	

Braiding is a process of inter-winding fiber tow in circular rotational to produce +θ° fiber angle of braided. Braiding is one of techniques in composite fabrication which widely used in aerospace, automotive and marine applications which offers lightweight structures as well as good in absorbing impact energy. Basalt, a mineral type of natural fiber had gradually gained interest of research due to their low cost and capability in breaking domination of e-glass as reinforcement material. Basalt braided in sleeve preforms offers ease of use but diameter-angle constraints. Thus, this study had focused on the effect of fiber tow density and braid angle of under crushing response. Crushing loads crush efficiency ratio, and specific energy absorption for two type of braided basalt sleeve had been demonstrated. Failure mechanism during crushing had been observed and discussed as well. Two type of basalt braided had been sleeved over mandrels resulted different braid angle of fiber orientations before epoxy resin was used completed composite tube fabrication via brushed method and post-cured by vacuum bagging technique. Highest crushing load and stress obtained from the highest fiber tow density at +40° braid angle. Meanwhile, sample with braid angle close to +45° was demonstrated diamond buckling during crushing.   
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1.	Introduction 

*The needs of composites in replacing metals part were drastically increased in a last few decades’ studies due to their specific weight advantages as well as performance. Fibrous composites offer a custom of performance from various fracture mechanism accordance to the application because of the tailoring ability in orienting fiber to resist the specific responses. Most of common fiber used as reinforcement composite were carbon fiber, glass fiber, aramid fiber, Kevlar fiber, and one of gradually increased of interest was basalt fiber (Matsuo, 2008; Singha, 2012).  Basalt fiber originates from volcanic magma and flood volcanoes, a very hot fluid or semifluid material under the earth's crust, solidified in the open air. Singha (2012) in their short reviewed article had found that basalt is capable to withstand very high temperature and can act as fire blocking element. Basalt fibers are increasingly proposed as an alternative to glass fibers as reinforcement for composite materials, in that they combine ecological safety, natural longevity, and fire safety. In addition, 
                                                 * Corresponding Author.  Email Address: nazrul@uthm.edu.my 

basalt fiber composites have higher chemical stability, largely exceeding fiberglass as regards acid, alkali and steam resistance, which can make the former preferable over the latter e.g., in the automotive industry, where extensive use of acids is made. The properties of basalt fiber composites appear to be comparable with glass fiber composites in terms of Young’s modulus, compressive and bending strength, impact force and energy (Mokhtar et al., 2015).  Textiles made by various methods such as weaving, knitting, and braiding have often been used as preforms of fiber reinforcement composite. Above all, the braiding has the characteristic that fibers are oriented continuously in any kind of shape. Braiding is an ancient textile technique with 2D braided structures are intertwined fibrous materials which capable of orienting fiber strands in 0° and ± θ° which θ/2 is define as braid angle (Nishimoto et al., 2010). The inter-lacing of the tows in the through thickness direction increases the splitting toughness and largely eliminates the delamination problem.  A numbers of research conducted proven that braid angle orientations gives significant effects to axial crushing response (Beni et al., 2014; Harte et al., 2000). Harte and Fleck (2000) observed two 
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folding, while +30° braid angle exhibited splaying mode during crushing. However +60° braid angle had catastrophic failure due to fiber crimp. SEA value performed highest upon near +40° and decreased towards +60° braid angle. CE ratio value demonstrated same trends as well. Braid angle near of +45° exhibited stability on energy dissipation proven by CE value and crushing failure mode. Thus, in material braided sleeve design selection for crashworthiness, its recommended that product designer not only select based on “diameter to use” but they should consider the higher fiber tow density that can be used as well to fit the diameter to get the best strength and energy absorption. Further, second priority was the braid angle should in range of +40° to +50° so to get good CE ratio and progressive buckling.  
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